Stoichiometry Problems

Use the following balanced equation to complete the problems below.

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{~g})
$$

1. How many moles of CO_{2} are produced when 5.0 moles of O_{2} are consumed?
2. How many moles of O_{2} are needed to completely react with 5.0 moles of $\mathrm{C}_{2} \mathrm{H}_{6}$?
3. How many moles of $\mathrm{H}_{2} \mathrm{O}$ are produced when 38.0 grams of $\mathrm{C}_{2} \mathrm{H}_{6}$ are consumed?
4. How many grams of CO_{2} are produced when 2.5 moles of O_{2} are consumed?
5. How many moles of $\mathrm{C}_{2} \mathrm{H}_{6}$ are required to produce 112 grams of CO_{2} ?
6. How many grams of O_{2} are required to produce 1.5 moles of $\mathrm{H}_{2} \mathrm{O}$?
7. How many grams of O_{2} are required if 1.50 grams of $\mathrm{C}_{2} \mathrm{H}_{6}$ are completely consumed?
8. How many grams of CO_{2} are produced when 18.5 grams of O_{2} are consumed?

Definitions

1. The starting material in a chemical reaction.
2. A conversion factor derived from the coefficients of a balanced chemical equation interpreted in terms of moles.
3. The maximum amount of product that could be formed in a reaction.
4. The amount of a substance that contains 6.02×10^{23} representative particles of that substance.
5. The substance completely used up in a chemical reaction.
6. The ratio of how much product is produced compare to how much is expected, expressed as a percentage.
7. The calculations of quantities in a chemical reaction.
8. The actual amount of product in a chemical reaction.
9. The substance left over after a reaction takes place.
10. A stoichiometric computation in which the mass of a product is determined from the given mass of reactants.

Excess reagent

Word Bank

Mole

Stoichiometry

Mass-mass calculation

Reactants

Theoretical yield

Limiting reagent

Mole ratio

Actual yield

Percent yield

