Stoichiometry Problems

Use the following balanced equation to complete the problems below.

 $2 C_2 H_6(g) + 7 O_2(g) \rightarrow 4 CO_2(g) + 6 H_2 O(g)$

1. How many moles of CO_2 are produced when 5.0 moles of O_2 are consumed?

2. How many moles of O_2 are needed to completely react with 5.0 moles of C_2H_6 ?

3. How many moles of H_2O are produced when 38.0 grams of C_2H_6 are consumed?

4. How many grams of CO_2 are produced when 2.5 moles of O_2 are consumed?

5. How many moles of C_2H_6 are required to produce 112 grams of CO_2 ?

6. How many grams of O_2 are required to produce 1.5 moles of H_2O ?

7. How many grams of O_2 are required if 1.50 grams of C_2H_6 are completely consumed?

8. How many grams of CO_2 are produced when 18.5 grams of O_2 are consumed?

Definitions

- 1. The starting material in a chemical reaction.
- 2. A conversion factor derived from the coefficients of a balanced chemical equation interpreted in terms of moles.
- 3. The maximum amount of product that could be formed in a reaction.
- The amount of a substance that contains 6.02 x 10²³ representative particles of that substance.
- 5. The substance completely used up in a chemical reaction.
- 6. The ratio of how much product is produced compare to how much is expected, expressed as a percentage.
- 7. The calculations of quantities in a chemical reaction.
- 8. The actual amount of product in a chemical reaction.
- 9. The substance left over after a reaction takes place.
- 10. A stoichiometric computation in which the mass of a product is determined from the given mass of reactants.

Word Bank

Mole

Stoichiometry

Mass-mass calculation

Reactants

Excess reagent

Theoretical yield

Limiting reagent

Mole ratio

Actual yield

Percent yield